Search results

Search for "critical temperature" in Full Text gives 49 result(s) in Beilstein Journal of Nanotechnology.

Superconducting spin valve effect in Co/Pb/Co heterostructures with insulating interlayers

  • Andrey A. Kamashev,
  • Nadir N. Garif’yanov,
  • Aidar A. Validov,
  • Vladislav Kataev,
  • Alexander S. Osin,
  • Yakov V. Fominov and
  • Ilgiz A. Garifullin

Beilstein J. Nanotechnol. 2024, 15, 457–464, doi:10.3762/bjnano.15.41

Graphical Abstract
  • insulating interlayers. The main specific feature of these structures is the intentional oxidation of both superconductor/ferromagnet (S/F) interfaces. We study the variation of the critical temperature of our systems due to switching between parallel and antiparallel configurations of the magnetizations of
  • was measured by a Hall probe with an accuracy of ±0.3 Oe. The sample temperature was monitored using an Allen-Bradley thermometer that is highly sensitive in the temperature range of interest. The temperature measurement error was ±(5–6) mK below 3 K. The superconducting critical temperature Tc was
  • smoother dependence of the critical temperature, possibly extending to lower temperatures. The model also suggests an asymmetric peak in ΔTc(dPb), whereas a more symmetric peak is observed in Figure 3 (at the same time, the left side of the peak is steeper than the right one both in theory and in
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2024

Design, fabrication, and characterization of kinetic-inductive force sensors for scanning probe applications

  • August K. Roos,
  • Ermes Scarano,
  • Elisabet K. Arvidsson,
  • Erik Holmgren and
  • David B. Haviland

Beilstein J. Nanotechnol. 2024, 15, 242–255, doi:10.3762/bjnano.15.23

Graphical Abstract
  • increases because of increasing quasiparticle population, leading us to select Nb-Ti-N with its high (bulk) critical temperature Tc ≈ 14 K. Mechanical simulations Several considerations determine the design of the Si-N cantilever in the scanning force sensor. The Si-N plate thickness is fixed when
  • with minimal back-action from motion detection. Our design covers a vast parameter space, balancing different considerations for both the electrical mode, such as critical current Ic, critical temperature Tc, and kinetic inductance per square Lk,□, and the mechanical mode, such as resonance frequency
  • simulation and experiment. Electrical mode From the measured normal-state resistance of our nanowires and the measured thickness and width, we find a sheet resistance R□ = 243 Ω/□, corresponding to a resistivity of ρn = 365 μΩ cm. We monitor the microwave response during cool-down and estimate a critical
PDF
Album
Full Research Paper
Published 15 Feb 2024

Exploring disorder correlations in superconducting systems: spectroscopic insights and matrix element effects

  • Vyacheslav D. Neverov,
  • Alexander E. Lukyanov,
  • Andrey V. Krasavin,
  • Alexei Vagov,
  • Boris G. Lvov and
  • Mihail D. Croitoru

Beilstein J. Nanotechnol. 2024, 15, 199–206, doi:10.3762/bjnano.15.19

Graphical Abstract
  • effects have been implicated in the observed increase of the critical temperature in recently discovered NbSe2 superconducting monolayers [16]. Theoretical investigations attribute this enhancement to the disorder-induced multifractal structure of electronic wave functions [17][18], as revealed through
PDF
Album
Full Research Paper
Published 12 Feb 2024

Josephson dynamics and Shapiro steps at high transmissions: current bias regime

  • Artem V. Galaktionov and
  • Andrei D. Zaikin

Beilstein J. Nanotechnol. 2024, 15, 51–56, doi:10.3762/bjnano.15.5

Graphical Abstract
  • junctions, this phenomenological model can be microscopically justified only at temperatures in the vicinity of the critical temperature Tc. As one goes away from Tc, the number of quasiparticles above the superconducting gap decreases exponentially and, hence, no dissipative currents at subgap voltages and
PDF
Album
Full Research Paper
Published 11 Jan 2024

Measurements of dichroic bow-tie antenna arrays with integrated cold-electron bolometers using YBCO oscillators

  • Leonid S. Revin,
  • Dmitry A. Pimanov,
  • Alexander V. Chiginev,
  • Anton V. Blagodatkin,
  • Viktor O. Zbrozhek,
  • Andrey V. Samartsev,
  • Anastasia N. Orlova,
  • Dmitry V. Masterov,
  • Alexey E. Parafin,
  • Victoria Yu. Safonova,
  • Anna V. Gordeeva,
  • Andrey L. Pankratov,
  • Leonid S. Kuzmin,
  • Anatolie S. Sidorenko,
  • Silvia Masi and
  • Paolo de Bernardis

Beilstein J. Nanotechnol. 2024, 15, 26–36, doi:10.3762/bjnano.15.3

Graphical Abstract
  • -critical-temperature Josephson junctions are effective sources for studying the amplitude–frequency characteristics of various detector systems with broadband continuous frequency tuning in comparison with low-critical-temperature counterparts [32][33]. The experiment on the study of the amplitude
PDF
Album
Full Research Paper
Published 04 Jan 2024

Upper critical magnetic field in NbRe and NbReN micrometric strips

  • Zahra Makhdoumi Kakhaki,
  • Antonio Leo,
  • Federico Chianese,
  • Loredana Parlato,
  • Giovanni Piero Pepe,
  • Angela Nigro,
  • Carla Cirillo and
  • Carmine Attanasio

Beilstein J. Nanotechnol. 2023, 14, 45–51, doi:10.3762/bjnano.14.5

Graphical Abstract
  • dirty limit, the orbital limit at zero temperature is given by [19]. Close to the critical temperature, Tc, the contribution of the orbital term dominates in determining the value of Hc2, at low temperatures and high fields, the Pauli term is predominant [20][21]. In general, the relative weight of the
  • resistance at 10 K. Results and Discussion Figure 1 displays the normalized resistive transitions in zero magnetic field of the NbRe and NbReN microstrips. The critical temperature, the low-temperature resistivity, and the residual resistivity ratio (RRR) are reported for both microstrips in Table 1. The RRR
  • the external field. The same quantities measured for NbReN are shown in Figure 2c and Figure 2d. In Figure 2e and Figure 2f, the field dependence of the width of the resistive transitions, ΔTc, is reported for NbRe and NbReN, respectively. We define , where () is the critical temperature obtained with
PDF
Album
Full Research Paper
Published 05 Jan 2023

Atmospheric water harvesting using functionalized carbon nanocones

  • Fernanda R. Leivas and
  • Marcia C. Barbosa

Beilstein J. Nanotechnol. 2023, 14, 1–10, doi:10.3762/bjnano.14.1

Graphical Abstract
  • pressure, and critical temperature, despite being a simple model [15][53]. The SHAKE algorithm was employed to keep the rigidity of water molecules. The oxygen–carbon Lennard-Jones (LJ) pair-wise non-bonded interaction, εO−C = 0.126 kcal/mol and σO−C = 3.279 Å, was calculated using the Lorentz–Berthelot
PDF
Album
Full Research Paper
Published 02 Jan 2023

Induced electric conductivity in organic polymers

  • Konstantin Y. Arutyunov,
  • Anatoli S. Gurski,
  • Vladimir V. Artemov,
  • Alexander L. Vasiliev,
  • Azat R. Yusupov,
  • Danfis D. Karamov and
  • Alexei N. Lachinov

Beilstein J. Nanotechnol. 2022, 13, 1551–1557, doi:10.3762/bjnano.13.128

Graphical Abstract
  • of thin-film lead electrodes with thicknesses from 50 nm to 200 nm was carried out by thermal evaporation in vacuum. The critical temperature of bulk lead is Тс(Pb3D) = 7.2 K. However, in the form of a thin film, the critical temperature of a superconductor can differ significantly from the tabulated
  • value [15][16]. In our samples, the critical temperature of lead electrodes varied from 7.8 K < Tc(Pbfilm) < 8.2 K. Submicron PDP films were prepared by centrifuging the polymer from a solution in cyclohexanone on a solid substrate. When preparing the solution, the polymer was first soaked in a small
  • superconducting transition was observed. Perhaps the most interesting are the results of transport measurements of Pb–PDP–Pb sandwiches at temperatures below the critical temperature of the superconducting transition of lead electrodes. In a number of samples, with a polymer film thickness of less than 350 nm
PDF
Album
Full Research Paper
Published 19 Dec 2022

Density of states in the presence of spin-dependent scattering in SF bilayers: a numerical and analytical approach

  • Tairzhan Karabassov,
  • Valeriia D. Pashkovskaia,
  • Nikita A. Parkhomenko,
  • Anastasia V. Guravova,
  • Elena A. Kazakova,
  • Boris G. Lvov,
  • Alexander A. Golubov and
  • Andrey S. Vasenko

Beilstein J. Nanotechnol. 2022, 13, 1418–1431, doi:10.3762/bjnano.13.117

Graphical Abstract
  • is the conductivity of the F layer [88][89], ξf = Df is the diffusion coefficient in the ferromagnetic metal, and Tc is the critical temperature of the superconductor [1][2]. We assume ℏ = kB = 1. We also assume that the SF interface is not magnetically active. We will consider the diffusive limit
PDF
Album
Full Research Paper
Published 01 Dec 2022

Experimental and theoretical study of field-dependent spin splitting at ferromagnetic insulator–superconductor interfaces

  • Peter Machon,
  • Michael J. Wolf,
  • Detlef Beckmann and
  • Wolfgang Belzig

Beilstein J. Nanotechnol. 2022, 13, 682–688, doi:10.3762/bjnano.13.60

Graphical Abstract
  • is the Boltzmann constant, and Tc is the critical temperature of the bulk superconductor. Using the conductivity the density of states at the Fermi energy of the free electron gas, and for the number of channels per area, we can simplify this to where vF is the Fermi velocity. With the definition
  • relation is given by: We defined the cutoff energy ΩBCS related to the upper limit of the phonon spectrum. In the following, we use ΩBCS = 100kBTc, and the coupling constant λ, which can be eliminated for the bulk superconductor in favor of the critical temperature Tc. After solving the fully self
PDF
Album
Full Research Paper
Published 20 Jul 2022

Approaching microwave photon sensitivity with Al Josephson junctions

  • Andrey L. Pankratov,
  • Anna V. Gordeeva,
  • Leonid S. Revin,
  • Dmitry A. Ladeynov,
  • Anton A. Yablokov and
  • Leonid S. Kuzmin

Beilstein J. Nanotechnol. 2022, 13, 582–589, doi:10.3762/bjnano.13.50

Graphical Abstract
  • rate. Therefore, its value is underestimated in dc measurements. The upper limit is given by the BCS expression 1.75kTc/(eRN) [29], which depends on the critical temperature of the electrodes and the normal resistance of the tunnel barrier only. This maximum possible critical current is difficult to
PDF
Album
Full Research Paper
Published 04 Jul 2022

Ciprofloxacin-loaded dissolving polymeric microneedles as a potential therapeutic for the treatment of S. aureus skin infections

  • Sharif Abdelghany,
  • Walhan Alshaer,
  • Yazan Al Thaher,
  • Maram Al Fawares,
  • Amal G. Al-Bakri,
  • Saja Zuriekat and
  • Randa SH. Mansour

Beilstein J. Nanotechnol. 2022, 13, 517–527, doi:10.3762/bjnano.13.43

Graphical Abstract
  • using a microtome for microscopic examination and analysis. The optimal critical temperature (O.C.T) compound is used to stabilize the skin during sectioning below −10 °C [25][26][27]. The sliced layers were analyzed for CIP content in a similar manner to that described in [25]. Experimental Materials
PDF
Album
Full Research Paper
Published 15 Jun 2022

Tunable superconducting neurons for networks based on radial basis functions

  • Andrey E. Schegolev,
  • Nikolay V. Klenov,
  • Sergey V. Bakurskiy,
  • Igor I. Soloviev,
  • Mikhail Yu. Kupriyanov,
  • Maxim V. Tereshonok and
  • Anatoli S. Sidorenko

Beilstein J. Nanotechnol. 2022, 13, 444–454, doi:10.3762/bjnano.13.37

Graphical Abstract
  • and ρ will also will be mentioned with indexes that denote the layer of these parameters), TC is the critical temperature of the superconductor, and γB = (RBA)/(ρlξl) is the interface parameter, where RBA is the resistance per square of the interface The calculated distribution of the anomalous Green
PDF
Album
Full Research Paper
Published 18 May 2022

Plasma modes in capacitively coupled superconducting nanowires

  • Alex Latyshev,
  • Andrew G. Semenov and
  • Andrei D. Zaikin

Beilstein J. Nanotechnol. 2022, 13, 292–297, doi:10.3762/bjnano.13.24

Graphical Abstract
  • prominent role of fluctuation effects in a reduced dimension [1][2][3]. Such fluctuations cause a reduction of the superconducting critical temperature [4] and yield a negative correction to the mean field value of the order parameter Δ0. In particular, at T→0 for the absolute value of the order parameter
PDF
Album
Full Research Paper
Published 04 Mar 2022

Design aspects of Bi2Sr2CaCu2O8+δ THz sources: optimization of thermal and radiative properties

  • Mikhail M. Krasnov,
  • Natalia D. Novikova,
  • Roger Cattaneo,
  • Alexey A. Kalenyuk and
  • Vladimir M. Krasnov

Beilstein J. Nanotechnol. 2021, 12, 1392–1403, doi:10.3762/bjnano.12.103

Graphical Abstract
  • range 1–11 THz has been demonstrated for small Bi-2212 mesa structures [14]. The operation of Josephson emitters is limited by two primary obstacles: self-heating and impedance mismatch. Josephson devices stop operating when their temperature exceeds the superconducting critical temperature Tc. Self
PDF
Album
Full Research Paper
Published 21 Dec 2021

Functional nanostructures for electronics, spintronics and sensors

  • Anatolie S. Sidorenko

Beilstein J. Nanotechnol. 2020, 11, 1704–1706, doi:10.3762/bjnano.11.152

Graphical Abstract
  • theoretically predicted and then experimentally detected. Some examples include a nonuniform superconducting Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) state, S/F π-junctions, oscillations of critical temperature and critical current in S/F hybrids on the thickness of the F-layer, multiperiodic re-entrant
PDF
Editorial
Published 10 Nov 2020

Controlling the proximity effect in a Co/Nb multilayer: the properties of electronic transport

  • Sergey Bakurskiy,
  • Mikhail Kupriyanov,
  • Nikolay V. Klenov,
  • Igor Soloviev,
  • Andrey Schegolev,
  • Roman Morari,
  • Yury Khaydukov and
  • Anatoli S. Sidorenko

Beilstein J. Nanotechnol. 2020, 11, 1336–1345, doi:10.3762/bjnano.11.118

Graphical Abstract
  • multilayer. We observe that the resistive transition of the multilayer structure has multiple steps, which we attribute to the transition of individual superconductive layers with the critical temperature, Tc, depending on the local magnetization orientation of the neighboring F-layers. We argue that such
  • effective critical temperature of the magnetic superconductor is significantly smaller than of the bulk semiconductor material. This property of the system is demonstrated in Figure 3. Figure 3a presents the temperature dependence of the pair potential in different superconducting layers for P (solid lines
  • the effective critical temperature, TC* ≈ 0.5TC. It should be noticed that the superconductivity support from the bulk semiconductor source provides a nontrivial shape for Δ(T) in the closest s-layer, with a sharp increase in the pair potential to a constant value in the vicinity of TC*. The farther
PDF
Album
Full Research Paper
Published 07 Sep 2020

3D superconducting hollow nanowires with tailored diameters grown by focused He+ beam direct writing

  • Rosa Córdoba,
  • Alfonso Ibarra,
  • Dominique Mailly,
  • Isabel Guillamón,
  • Hermann Suderow and
  • José María De Teresa

Beilstein J. Nanotechnol. 2020, 11, 1198–1206, doi:10.3762/bjnano.11.104

Graphical Abstract
  • is based on Ga+ ions. Functional 3D nanomaterials have been grown by Ga+ FIBID in the last decade [21][22][23][24][25][26]. In particular, Ga+ FIBID in combination with W(CO)6 as precursor material yielded 3D superconducting W-based wires with a critical temperature (Tc) below 5 K and a critical
PDF
Album
Supp Info
Full Research Paper
Published 11 Aug 2020

Nonadiabatic superconductivity in a Li-intercalated hexagonal boron nitride bilayer

  • Kamila A. Szewczyk,
  • Izabela A. Domagalska,
  • Artur P. Durajski and
  • Radosław Szczęśniak

Beilstein J. Nanotechnol. 2020, 11, 1178–1189, doi:10.3762/bjnano.11.102

Graphical Abstract
  • in Li-hBN is characterized by much lower values of the critical temperature (TLOVCC ∈ {19.1, 15.5, 11.8} K, for μ* ∈ {0.1, 0.14, 0.2}, respectively) than would result from calculations not taking this effect into account (TMEC∈ {31.9, 26.9, 21} K). From the technological point of view, the low value
  • percent. Keywords: critical temperature; electron–phonon interaction; Li-hBN bilayer; Li-intercalated hexagonal boron nitride (Li-hBN); nonadiabatic superconductivity; vertex corrections; Introduction Low-dimensional systems such as graphene [1][2][3][4][5], silicene [6], borophene [7][8], and
  • ] and quantum information technology [44][45]. Currently, the most promising research seems to be the properties of the superconducting state in Li-intercalated hexagonal boron nitride bilayer (Li-hBN) compounds. Based on DFT calculations, it has been shown that the critical temperature (TC) of the
PDF
Album
Full Research Paper
Published 07 Aug 2020

Microwave photon detection by an Al Josephson junction

  • Leonid S. Revin,
  • Andrey L. Pankratov,
  • Anna V. Gordeeva,
  • Anton A. Yablokov,
  • Igor V. Rakut,
  • Victor O. Zbrozhek and
  • Leonid S. Kuzmin

Beilstein J. Nanotechnol. 2020, 11, 960–965, doi:10.3762/bjnano.11.80

Graphical Abstract
  • 0.38 mV, corresponding to the critical temperature of Al, TC(Al) = 1.2 K, the capacitance is C ≈ 0.036 pF, the critical current density is 3.8 × 10−3 kA/cm2 and the normal resistance is RN = 2300 Ω, which gives the maximal possible value of the critical current = 1.764 kTC/eRN ≈ 80 nA. The measured
PDF
Album
Full Research Paper
Published 23 Jun 2020

A Josephson junction based on a highly disordered superconductor/low-resistivity normal metal bilayer

  • Pavel M. Marychev and
  • Denis Yu. Vodolazov

Beilstein J. Nanotechnol. 2020, 11, 858–865, doi:10.3762/bjnano.11.71

Graphical Abstract
  • equation where Tc0 is the critical temperature of the single S layer. We assume that Δ is nonzero only in the S layer because of the absence of attractive phonon-mediated electron–electron coupling in the N layer. Equation 1 and Equation 2 are supplemented by the Kupriyanov–Lukichev boundary conditions [16
  • NbN/Al, NbN/Ag and MoN/Ag bilayers. Namely, the suppression of the critical temperature of the SN bilayer is smaller while the change in magnetic field penetration depth of the SN bilayer is larger than the Usadel model predicts. Therefore, the present results should be considered only as a route for
  • when using these parameters. However there is the hope, that the critical temperature of a real SN bilayer is higher than the Usadel model predicts (see discussion above) and therefore large Ic values could be reached at higher operating temperatures T/Tc0, leading to a drastic reduction of (see
PDF
Album
Full Research Paper
Published 02 Jun 2020

Epitaxial growth and superconducting properties of thin-film PdFe/VN and VN/PdFe bilayers on MgO(001) substrates

  • Wael M. Mohammed,
  • Igor V. Yanilkin,
  • Amir I. Gumarov,
  • Airat G. Kiiamov,
  • Roman V. Yusupov and
  • Lenar R. Tagirov

Beilstein J. Nanotechnol. 2020, 11, 807–813, doi:10.3762/bjnano.11.65

Graphical Abstract
  • , at 7.2 K for the Pd0.96Fe0.04/VN structure and at 6.1 K for the VN/Pd0.92Fe0.08 structure with the critical temperature decreasing due to the proximity effect. Contrary to expectations, all transitions were very sharp with the width ranging from 25 mK for the VN film to 50 mK for the VN/Pd0.92Fe0.08
PDF
Album
Full Research Paper
Published 15 May 2020

Anomalous current–voltage characteristics of SFIFS Josephson junctions with weak ferromagnetic interlayers

  • Tairzhan Karabassov,
  • Anastasia V. Guravova,
  • Aleksei Yu. Kuzin,
  • Elena A. Kazakova,
  • Shiro Kawabata,
  • Boris G. Lvov and
  • Andrey S. Vasenko

Beilstein J. Nanotechnol. 2020, 11, 252–262, doi:10.3762/bjnano.11.19

Graphical Abstract
  • ferromagnetic metal. The existence of such phenomena enables the creation of so-called Josephson π junctions with a negative critical current [1][2]. Oscillations of the pair wave function in the F layer leads to several interesting phenomena in S/F/(S) systems, including nonmonotonic critical temperature
  • interface [86][87][88]. Here σn is the conductivity of the F layer and is the coherence length, where Tc is the critical temperature of the superconductor S (here and below we assume ℏ = kB = 1). In this paper we consider the diffusive limit, when the elastic scattering length is much smaller than the
  • Tc is the critical temperature of the superconductor S. In Figure 2 the characteristic “finger-like” shape of DOS is observed along with a minigap for df = 2ξn (Figure 2a,c). At larger df and/or at larger h the minigap closes (Figure 2c and Figure 3a,c)]. In the absence of magnetic scattering (αm = 1
PDF
Album
Full Research Paper
Published 23 Jan 2020

Synthesis of highly active ETS-10-based titanosilicate for heterogeneously catalyzed transesterification of triglycerides

  • Muhammad A. Zaheer,
  • David Poppitz,
  • Khavar Feyzullayeva,
  • Marianne Wenzel,
  • Jörg Matysik,
  • Radomir Ljupkovic,
  • Aleksandra Zarubica,
  • Alexander A. Karavaev,
  • Andreas Pöppl,
  • Roger Gläser and
  • Muslim Dvoyashkin

Beilstein J. Nanotechnol. 2019, 10, 2039–2061, doi:10.3762/bjnano.10.200

Graphical Abstract
  • ., 873 K) for 6 h. Such thermal treatment might cause cracks in part of the framework, for example, separating two adjacent mesopores, leading to merging into a larger void. It was reported that the ETS-10 framework can collapse at temperatures above 920 K [41]. To determine this critical temperature
  • , which might vary for titanosilicates prepared under different conditions, DTA was conducted where a critical temperature of ≈950 K was determined (Figure 11). This is only 77 K higher than the calcination temperature employed, which might be sufficient to introduce such cracks upon heating. On the other
PDF
Album
Supp Info
Full Research Paper
Published 28 Oct 2019

Superconducting switching due to a triplet component in the Pb/Cu/Ni/Cu/Co2Cr1−xFexAly spin-valve structure

  • Andrey Andreevich Kamashev,
  • Nadir Nurgayazovich Garif’yanov,
  • Aidar Azatovich Validov,
  • Joachim Schumann,
  • Vladislav Kataev,
  • Bernd Büchner,
  • Yakov Victorovich Fominov and
  • Ilgiz Abdulsamatovich Garifullin

Beilstein J. Nanotechnol. 2019, 10, 1458–1463, doi:10.3762/bjnano.10.144

Graphical Abstract
  • the F1 and the F2 layer and yields a minimum of the SC critical temperature Tc of the system in an approximately orthogonal geometry. This theoretical prediction was experimentally confirmed for the first time by some of us in the study of the Fe1/Cu/Fe2/Pb multilayer [13]. A constantly growing
  • resistivity at 300 K, and ρ(10 K) is the residual resistivity at 10 K (i.e., above Tc). For our samples this ratio amounted to RRR = 10–12, which corresponds to a SC coherence length of ξS = 41–45 nm (for details see [21]). The critical temperature Tc is defined as the midpoint of the SC transition curve. Its
  • insights into exciting physics of the triplet superconducting spin valves. SC critical temperature Tc as a function of the thickness of the Pb layer dPb at a fixed thickness of the Ni layer dNi = 5 nm for the trilayer Ni(5 nm)/Cu(1.5 nm)/Pb. Solid line is the theoretical fit according to [12] with the
PDF
Album
Letter
Published 19 Jul 2019
Other Beilstein-Institut Open Science Activities